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Fund of Hedge Funds Portfolio Selection: A

Multiple-Objective Approach

This paper develops a technique for fund of hedge funds to allocate capital across differ-

ent hedge fund strategies and traditional asset classes. Our adaptation of the Polynomial

Goal Programming (PGP) optimization method incorporates investor preferences for higher

return moments, such as skewness and kurtosis, and provides computational advantages

over rival methods. We show how optimal allocations depend on the interaction between

strategies, as measured by covariance, co-skewness and co-kurtosis. We also demonstrate the

importance of constructing “like for like” representative portfolios that reflect the investment

opportunities available to different sized funds. Our empirical results reveal the importance

of equity market neutral funds as volatility and kurtosis reducers, and of global macro funds

as portfolio skewness enhancers.
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As hedge funds continue to become more and more popular with in-

vestors, the amount of assets under their management has steadily grown, from around

$40 billion in 1990 to an estimated $1,182 billion in 2006. Most investors do not invest in

individual hedge funds directly, but invest in so-called funds of hedge funds (FoHF) instead.

In return for a typically not-insignificant fee, FoHF (claim to) take care of the many unavoid-

able, time-consuming and complex issues that come with investing in a highly opaque asset

class such as hedge funds. Although FoHF have been around for quite some time, it is still

unclear how FoHF should optimally allocate capital across various hedge fund strategies.1

In this paper, we show how a simple allocation technique based on Polynomial Goal Pro-

gramming (PGP) is particularly well-suited to dealing with the complex return distributions

of hedge funds and their practical institutional constraints.

Amin and Kat [2003b], Anson [2002], and others, show that hedge fund returns are

substantially more complex than common stock and bond returns. Not only do hedge fund

return distributions tend to exhibit significant skewness and kurtosis, they also tend to

display significant co-skewness with the returns on other hedge funds as well as equity. As

a result, standard mean-variance portfolio theory (as well as performance measures based

on it, such as the Sharpe ratio) is inadequate when dealing with portfolios of (or including)

hedge funds — a more extensive model is required.2

Here, we construct a PGP optimization model that is able to balance multiple conflicting

and competing hedge fund allocation objectives: maximizing expected return while simul-

taneously minimizing return variance, maximizing skewness and minimizing kurtosis. We

show how changes in investor preferences lead to different asset allocation across hedge fund

strategies and across asset classes (hedge funds, stocks, and bonds). The PGP model pro-

vides guidance on how much capital, if any, should be allocated to each hedge fund strategy.

In this way, a fund of funds can incorporate the investment goals of its target investors to

1MeesPierson’s Leveraged Capital Holdings, one of the first multi-manager FoHF, was introduced in 1969.
2Of course, this implicitly assumes that investors’ utility functions are of higher order than quadratic.

See Jean [1971] and Scott and Horvath [1980] for details.
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help determine whether it should hold a wide cross-section of strategies (as the majority of

FoHF do), or instead should focus its expertise on a few strategies or a single strategy.

We proceed as follows. The next section formulates optimal hedge fund portfolio selection

within a 4-moment framework as a multiple objective problem. Section 2 describes the data.

Section 3 provides illustrative empirical results. Section 4 concludes. The appendix outlines

the procedure used for unsmoothing the raw hedge fund return data.

1 Portfolio Selection in a 4-Moment Framework

The PGP approach was first used in finance by Tayi and Leonard [1988] to facilitate bank

balance sheet management. It has subsequently been used by Lai [1991], Chunhachinda, et

al. [1997], Sun and Yan [2003], and Prakash et al. [2003] to solve portfolio selection problems

involving a significant degree of skewness. Here, we adapt the basic PGP approach to the

context of FoHF portfolio selection. In order to incorporate more information about the non-

normality of returns, we augment the dimensionality of the PGP portfolio selection problem

from mean-variance-skewness to mean-variance-skewness-kurtosis. Later, we describe how

we construct representative portfolios for each hedge fund strategy.

Consider an environment with n+1 assets. Each of the assets 1, 2, . . . , n is a portfolio of

hedge funds selected in a manner described below to represent a typical portfolio of funds

drawn from each of the n hedge fund strategy classifications. Each strategy portfolio has

a random return R̃i. We impose a no short-sale requirement: negative positions in the

portfolios of hedge funds are not allowed. Asset n + 1 is the risk-free asset with rate of

return r for both borrowing and lending.

Let xi denote the percentage of wealth invested in the ith asset and let X = (x1, x2, · · · , xn)>.

Corresponding to R̃ = (R̃1, R̃2, . . . , R̃n)>, is a positive definite n×n variance-covariance ma-

trix V. The percentage invested in the risk-free asset is determined by xn+1 = 1 − I>X,

where I is a n× 1 identity vector. Since the portfolio decision depends on the relative per-

2



centage invested in each asset, the portfolio choice X can be rescaled and restricted on the

unit variance space (i.e., {X | X>VX = 1}). Then, the portfolio selection problem may be

stated as the following multiple objective programming problem:

Maximize Z1 = E
[
X>R̃

]
+ xn+1r, (1)

maximize Z3 = E
[
X>

(
R̃− E[R̃]

)]3

, (2)

minimize Z4 = E
[
X>

(
R̃− E[R̃]

)]4

, (3)

subject to X>VX = 1; X ≥ 0; xn+1 = 1− I>X. (4)

where portfolio expected return is Z1, skewness is Z3, and kurtosis is Z4.

Given an investor’s preferences among objectives, a PGP can be expressed instead as:

Minimize Z = (1 + d1)
α + (1 + d3)

β + (1 + d4)
γ, (5)

subject to E
[
X>R̃

]
+ xn+1r + d1 = Z∗

1 , (6)

E
[
X>

(
R̃− E[R̃]

)]3

+ d3 = Z∗
3 , (7)

−E
[
X>

(
R̃− E[R̃]

)]4

+ d4 = −Z∗
4 , (8)

d1, d3, d4 ≥ 0, (9)

X>VX = 1; X ≥ 0; xn+1 = 1− I>X. (10)

where Z∗
1 = Max{Z1 | X>VX = 1} is the mean return for the optimal mean-variance port-

folio with unit variance, Z∗
3 = Max{Z3 | X>VX = 1} is the skewness value of the optimal

skewness-variance portfolio with unit variance, and Z∗
4 = Min{Z4 |X>VX = 1} is the kurto-

sis value of the optimal kurtosis-variance portfolio with unit variance; and where α, β and γ

are the nonnegative investor-specific parameters representing the investor’s subjective degree

of preferences on the mean, skewness and kurtosis of the portfolio return. The specification

of our objective function in (5) ensures that it is monotonically increasing in d1, d3, and d4

for all possible values.

In summary, solving the multiple objective PGP problem involves a two-step procedure.

First, the optimal values for Z∗
1 , Z∗

3 and Z∗
4 , expected return, skewness and kurtosis, respec-
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tively, are each obtained within a unit variance two space framework. Subsequently, these

values are substituted into the conditions (6)–(8), and the minimum value of (5) is found for

a given set of investor preferences {α, β, γ} within the four-moment framework.

All the optimal portfolios obtained above are composed of risky assets (hedge fund strat-

egy portfolios) and the risk-free asset, in order to ensure the uniqueness of each optimal port-

folio. To capture an investor that is fully invested in hedge funds, we rescale the portfolio X

such that the total investment is one (i.e. such that xn+1 = 0). Let yi = xi/(x1+x2+. . .+xn)

be the percentage invested in the ith asset in the optimal portfolio Y. In the context of

FoHF portfolios, yi is the capital weight allocated to each hedge fund strategy in the optimal

hedge fund portfolio.

When we investigate the asset allocation strategies for portfolios of stocks, bonds and

hedge funds, there are n + 3 assets in the world: n representative portfolios, one for each

hedge fund strategy; the S&P500 index, representing stocks; the Salomon Brothers 7 Year

Government Bond index (SALGVT7), representing bonds; and the risk-free asset. A no

short-sale restriction is imposed for hedge fund portfolios only. Negative positions in stocks

and/or bonds are allowed for.

Our PGP framework can be thought about in economic terms. Investors’ utility will be

augmented by a positive first moment (expected return), positive third moment (skewness)

and negative fourth moment (kurtosis). The investor preference parameters α, β, and γ are

directly associated with the marginal rate of substitution, which measures the desirability

of forgoing one objective in order to gain another (conflicting) objective. For example, the

marginal rate of substitution between expected return and skewness is given by ∂Z/∂d1

∂Z/∂d3
=

α(1+d1)α−1

β(1+d3)β−1 , and the marginal rate of substitution between expected return and kurtosis is

given by ∂Z/∂d1

∂Z/∂d4
= α(1+d1)α−1

γ(1+d4)γ−1 .

Thus, our approach allows users a simple, transparent method to specify their heteroge-

neous preferences for higher moments. This contrasts with standard portfolio optimization
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based on a specific utility function.3 Recall that even the standard mean-variance utility

function of Markowitz [1959] and Sharpe [1970] may be viewed as an approximation to the

more basic von Neumann-Morgenstern utility function and more particularly to the isoe-

lastic family of utility functions.4 Unfortunately, these functions do not provide an exact

preference ordering for risky portfolios using the first three (or higher) moments of port-

folio returns. To isolate the impact of each moment, these non-polynomials are typically

expanded using a Taylor series approximation. From an academic perspective, this is easily

accommodated.5 In practice, however, it is difficult for investors of hedge funds to describe

their “utility function.” Cremers, Kritzman, and Page [2005] use a full-scale optimization

approach to show that different specifications of investor preferences (power utility, bilinear

utility, and S-shaped value functions) imply considerable differences in the effect of higher

return moments on optimal hedge fund allocations. Our simple approach largely mitigates

these difficulties.

It is also important to highlight the advantages of using our approach over using a 1-stage

linear objective function, such as:

max E[Rp]− λ1Variance(Rp) + λ2Skewness(Rp)− λ3Kurtosis(Rp) (11)

This linear objective function requires portfolio weights to be optimized over four dimensions

simultaneously — potentially a very difficult computational problem. Worse yet, because

skewness and kurtosis are the third and fourth return moments scaled by variance, each

of the terms in the objective function interact with each other in complex ways, making

trade-offs difficult to interpret. Thus, as the possible asset space increases in size, it becomes

3Examples in the context of hedge funds include Hagelin and Pramborg [2004] who develop a discrete-
time dynamic investment model based on an investor with a power utility function and Barés et al. [2002]
who examine the impact of hedge fund survival uncertainty on optimal allocations in an expected utility
framework. In a more general asset return context, Harvey, et al. [2004] considers utility based portfolio
optimization using a new Bayesian decision theoretic framework which incorporates higher moments and
estimation error.

4Common choices are logarithmic, power, and negative exponential utility functions. These functions
satisfy the desirable properties: (a) nonsatiety with respect to wealth, (b) risk aversion, and (c) risk assets
are not inferior goods. See Grauer [2004] for more details.

5It is worth noting, however, that some of these utility-based approaches do not guarantee the existence
of an optimal solution.
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increasingly likely that a numerical solver will solve for a local maximum (or minimum)

rather than the global maximum of (11).

In contrast, our PGP approach improves computational tractability by conducting the

optimization in two stages. In the first stage, optimization is conducted in 2-dimensional

space, thereby ensuring that a numerical solver always locates the global maximum (mini-

mum) value of each moment. Then, in the second stage, optimization is conducted relative

to these known targets (an easier computational problem). Investors can specify their pref-

erences relative to these targets, allowing them more control and greater insights about the

potential trade-offs. Throughout this process we set variance equal to one (which can later

be re-scaled) — in effect, this means our optimization uses unscaled return moments, rather

than skewness and kurtosis. This further improves computational tractability and also leads

to better investment choices (see Bulhart and Klein [2005] for compelling evidence of this).

A natural question to ask is how our PGP approach performs out-of-sample relative to

other approaches. Some evidence is provided by Anson, Ho, and Silberstein [2005], who

use our PGP optimization approach to the CalPERS’ hedge fund portfolio. They run the

optimization process quarterly, and impose a 3-month lag between the optimization and

the implementation (due to quarterly liquidity constraints). They find that out-of-sample

performance of the optimized portfolios is better than mean-variance portfolios and that

increasing investor preference parameters for the third and fourth return moment improves

these moments out-of-sample. While this evidence is certainly encouraging, we caution read-

ers that higher return moments can be driven by rare outliers, and therefore a more detailed

out-of-sample analysis would require a longer history of hedge fund data than currently

available.

Finally, before proceeding to our empirical results, we mention that another advantage

of the PGP approach is that it can be adapted to embed other investor goals. For instance,

based on an earlier version of this paper, at least one hedge fund has already adapted the PGP

optimization function to incorporate a value-at-risk (VaR) measure. Thus, the method could
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incorporate features of other hedge fund allocation techniques, such as the mean-modified

value-at-risk optimization procedure proposed by Favre and Galeano [2002].6

2 Strategy Classification and Data

Hedge fund investment strategies tend to be quite different from the strategies followed by

traditional money managers. In principle every fund follows its own proprietary strategy,

which means that hedge funds are a very heterogeneous group. It is, however, customary to

ask hedge fund managers to classify themselves into one of a number of different strategy

groups depending on the main type of strategy followed. We concentrate on seven main

classes of funds. The numbers in square brackets indicate the estimated market share of

each strategy group in terms of assets under management based on the June 2002 TASS

asset flows report:

Long/Short Equity [43%]: Funds that simultaneously invest on both the long and the

short side of the equity market. Unlike equity market neutral funds (see below), the portfolio

may not always have zero market risk. Most funds have a long bias.

Equity Market Neutral [7%]: Funds that simultaneously take long and short positions

of the same size within the same market, i.e. portfolios are designed to have zero market

risk. Leverage is often applied to enhance returns.

Convertible Arbitrage [9%]: Funds that buy undervalued convertible securities, while

hedging (most of) the intrinsic risks.

Distressed Securities [11%]: Funds that trade the securities of companies in reorganiza-

tion and/or bankruptcy, ranging from senior secured debt to common stock.

Merger Arbitrage [8%]: Funds that trade the stocks of companies involved in a merger

6Other important papers in the hedge fund allocation literature include: Lamm [2003]’s Cornish-Fisher
expansion, Terhaar et al. [2003]’s factor model, Alexander and Dimitriu [2004]’s statistical factor model
approach, Cvitanić et al. [2003]’s manager ability uncertainty framework, Amec and Martellini [2002]’s out-
of-sample model, and Popova et al. [2006]’s benchmark over/under performance construction.
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or acquisition, buying the stocks of the company being acquired while shorting the stocks of

its acquirer.

Global Macro [9%]: Funds that aim to profit from major economic trends and events

in the global economy, typically large currency and interest rate shifts. These funds make

extensive use of leverage and derivatives.

Emerging Markets [3%]: Funds that focus on emerging and less mature markets. These

funds tend to be long only because in many emerging markets short selling is not permitted

and futures and options are not available.

The database used in this study covers the period June 1994–May 2001 and was obtained

from Tremont TASS, which is one of the best known and largest hedge fund databases

available. Our database includes the Asian, Russian and LTCM crises as well as the end

of the IT bubble and the first part of the bear market that followed. As of May 2001, the

database contains monthly net of fee returns on a total of 2183 hedge funds and FoHF.

Reflecting the tremendous growth of the industry as well as a notoriously high attrition rate,

only 264 of these hedge funds had seven or more years of data available.

As shown in Amin and Kat [2003a], concentrating on surviving funds only will not only

overestimate the mean return on individual hedge funds by around 2% but will also introduce

significant biases in estimates of standard deviation, skewness and kurtosis. To avoid this

problem we decide not to work with the raw return series of the 264 survivor funds but

instead to create 348 seven-year monthly return series by, starting off with the 348 funds

that were alive in June 1994, replacing every fund that closed down during the sample period

by a fund randomly selected from the set of funds alive at the time of closure following the

same type of strategy and of similar size and age. We do not include FoHF or dedicated

short bias funds in our sample.

This replacement procedure implicitly assumes that in case of fund closure investors are

able to roll from one fund into the other at the reported end-of-month net asset value and

at zero additional costs. This somewhat underestimates the true costs of fund closure to
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investors for two reasons. First, when a fund closes shop its investors have to look for a

replacement investment. This search takes time and is not without costs. Second, investors

may get out of the old and into the new fund at values that are less favorable than the

end-of-month net asset values contained in the database. Unfortunately, it is impossible to

correct for this without additional information.

As hedge funds frequently invest in, to various degrees and combinations, illiquid exchange-

traded and difficult-to-price over-the-counter securities, hedge fund administrators can have

great difficulty in marking a portfolio to market at the end of the month to arrive at the

fund’s net asset value. Having difficulty obtaining an accurate value for illiquid assets, most

will rely on ‘old’ prices or observed transaction prices for similar but more liquid assets. Such

partial adjustment or ‘smoothing’ produces systematic valuation errors which tend not to

be diversified away, resulting in serial correlation in monthly returns and underestimation

of their true standard deviations. In this paper we follow the approach of Brooks and Kat

[2001], outlined in the appendix, to unsmooth hedge fund returns and thereby reconcile stale

price problems. Table 1 provides a statistical summary of reported and unsmoothed individ-

ual hedge fund returns. Looking at the 1-month autocorrelations, the smoothing problem is

especially acute among convertible arbitrage and distressed securities funds. This is plausi-

ble as the securities held by these funds tend to be highly illiquid. As well, the unsmoothing

produces standard deviations that are substantially higher than those calculated from re-

ported returns, especially in convertible arbitrage and distressed securities where we observe

a rise of around 30%. In what follows we concentrate on the unsmoothed returns.

Table 1 offers some other insights as well. Funds in different strategy groups tend to

generate quite different returns, which confirms that the (self-)classification used has signifi-

cant discriminatory power. From the table it is also clear that the risk profile of the average

hedge fund cannot be accurately described by standard deviation alone. The table reports

that the majority of funds in each strategy group reject the null hypothesis of a normal re-

turn distribution under a Jarque-Bera test at the 5% significance level. All strategy groups

exhibit non-zero skewness and excess kurtosis, with global macro being the only strategy
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producing positive skewness.

Most existing research on optimal hedge fund allocation, including Lamm [2003], Morton

et al. [2006], Amenc and Martellini [2002] and Cvitanić et al. [2003], uses well-known hedge

fund indices (obtained from, for example, HFR or CSFB-TASS) to represent the different

hedge fund strategy classes. Given the different number of funds in each index, however,

different indices will achieve different levels of diversification. As shown in Amin and Kat

[2002] and Davies, Kat and Lu [2003], hedge fund portfolio return properties vary substan-

tially with the number of hedge funds included in the portfolio. For instance, an index

constructed from only ten funds will typically have significantly higher variance than a sim-

ilar index constructed from 100 funds. An index composed of more funds is therefore likely

to be allocated more capital. This higher allocation, however, results because this index has

less specific risk than other indices based on a smaller number of funds, rather than because

this strategy has lower risk.

To compare “like for like,” we construct representative portfolios containing the same

number of funds for each hedge fund strategy. Specifically, we consider representative port-

folios of 5 and 15 funds to capture the feasible investment possibilities of small and large

sized FoHF. In practice, FoHF have to deal with minimum investment requirements, typi-

cally ranging from $100,000 to $500,000 per fund. For smaller FoHF this forms a significant

barrier to diversification. In contrast, large FoHF typically spread their investments over

a relatively large number of managers to prevent the fund from becoming the dominant

investor in any one particular fund.7

We construct the representative portfolios for a given strategy as follows. First, we

randomly sample 5000 portfolios of a given size (5 or 15 funds). We calculate each portfolio’s

mean, standard deviation, skewness and kurtosis and take the average of each moment over

the 5000 portfolios. The representative portfolio is then selected from the 5000 random

7The optimal number of funds (within a strategy group) is an interesting area which will be dealt with in
a subsequent paper. In part, the number of funds reflects a trade-off between possible diversification benefits
and the cost of finding and monitoring high quality funds.
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portfolios in order to minimize the sum of the ranked differences across each of the four

average moments. Table 2 provides the return characteristics of the representative portfolios

thus obtained. In unreported results, we also considered representative portfolios of 10 and

20 funds. Our results show that as the number of funds in portfolio increases, standard

deviations fall substantially. This indicates relatively low correlation between funds within

the same strategy group, i.e. a high level of fund specific risk. Also, when the number of

funds increases, portfolio return distributions become more skewed, indicating a high degree

of co-skewness between funds within the same strategy group. Diversification is no longer

a free lunch: Investors pay for a lower standard deviation by accepting a lower level of

skewness. The only exception is global macro, where lower standard deviations go hand in

hand with higher levels of skewness.

In practice, managers of FoHF do not select hedge funds by random sampling. That

said, the fact that many spend a lot of time and effort to select the funds they invest in

does not necessarily mean that in many cases a randomly sampled portfolio is not a good

proxy for the portfolio that is ultimately selected. There is no evidence that some FoHF are

able to consistently select future outperformers, nor is there any evidence of specific patterns

or anomalies in hedge fund returns. When properly corrected for all possible biases there

is no significant persistence in hedge fund returns, nor is there any significant difference in

performance between older and younger funds, large and small funds, etc. In addition, older

funds may be more or less closed to new investment, implying that expanding fund of funds

are often forced to invest in funds with little or no track record. The fund prospectus and

manager interviews may provide some information, but in most cases this information will

be sketchy at best and may add more noise than actual value.

Finally, our analysis uses the sample average of the 90-day US T-bill rate, r = 0.423317%

on a monthly basis, as the risk-free rate. While for the most part we focus on the portfolio

selected by a FoHF that neither borrows nor lends, the risk-free rate is necessary to determine

the optimal portfolio since it reflects the leverage possibilities available to a FoHF investor.
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3 Empirical Results

We now use PGP optimization to obtain optimal portfolios for ten different sets of investor

preferences, for both FoHF portfolios and portfolios of stocks, bonds, and hedge funds. These

preference sets are chosen to illustrate the extent to which investors must trade off differ-

ent moments, to determine which hedge fund strategies are crucial in determining overall

portfolio performance, and to see how allocations change if we impose capital constraints on

each hedge fund strategy.

3.1 Trade-Off Between Multiple Objectives

The more importance investors attach to a certain moment, i.e. the greater the preference

parameter for this moment, the more favorable the value of this moment statistic will tend to

be in the optimal portfolio. Investor preferences (α, β, γ) determine the relative importance

of the difference between the values for expected return, skewness, and kurtosis obtained

in mean-variance-skewness-kurtosis space and their corresponding optimal values obtained

in mean-variance (Z∗
1), skewness-variance (Z∗

3), and kurtosis-variance space (Z∗
4). Figure 1

shows that the difference, d1 = Z∗
1−E

[
X>R̃

]
−xn+1r, decreases monotonically as investors’

preference for expected return (α) increases, holding β = 1 and γ = 0.5 fixed. It also provides

the analogous results for skewness (holding α = 1 and γ = 0.5 fixed) and kurtosis (holding

α = 1 and β = 1 fixed). Based on these results, we choose realistic values for the preference

parameters: α, β ∈ {0 (none), 1 (low), 2 (medium), 3 (high)} and γ ∈ {0 (none), 0.25 (low),

0.5 (medium), 0.75 (high)}, to capture investors with no, low, medium, and high preference,

respectively, for the applicable return moment.

Table 3 provides the return characteristics of PGP optimal portfolios for small and large

investors for different sets of investor preferences over expected return (α), skewness (β)

and kurtosis (γ). Portfolio A with (α, β, γ) = (1, 0, 0) corresponds with the mean-variance

efficient portfolio. Expected return is relatively high and standard deviation low, which in
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mean-variance terms makes for a highly attractive portfolio. Looking beyond mean and

variance, however, we see that the skewness and kurtosis properties of this portfolio are

extremely unattractive. This confirms the point raised by Amin and Kat [2003b] that mean-

variance optimizers may be nothing more than skewness minimizers.

Portfolios B–J show that variations in investor preferences will change the risk-return

characteristics of the optimal portfolio to quite an extent. These results reinforce the trade-

offs illustrated in figure 1 and show that as one moment statistic improves, at least one of the

other three moment statistics will tend to deteriorate. Compare, for example, portfolio E,

(α, β, γ) = (1, 3, 0.25), with portfolio H, (α, β, γ) = (2, 3, 0.25). These two portfolios have

the same level of preference over skewness and kurtosis. Despite this, the higher preference

over expected return in portfolio H leads to a higher expected return at the cost of a higher

standard deviation. The same phenomenon can be observed by comparing portfolio G,

(α, β, γ) = (2, 1, 0.75), with portfolio H. Higher preference for skewness and lower preference

for kurtosis causes the high kurtosis and high standard deviation of portfolio H to be traded

in for a higher expected return and substantially higher skewness.

The above observation that hedge fund moment statistics tend to trade off against each

other is quite an interesting one. Despite the fact that hedge funds often follow highly active,

complex strategies, hedge fund returns seem to exhibit the same type of trade-offs typically

observed in the underlying securities markets, where prices are (thought to be) explicitly set

to generate this type of phenomenon. Hedge funds therefore appear unable to dodge the

rules of the game and seem to pick up a lot more from the markets that they trade than

their well-cultivated market neutral image may suggest.

Figure 2 shows the feasible set of portfolios and the resulting mean-variance efficient fron-

tier as well as the mean-variance coordinates of some specific optimal portfolios, including

the mean-variance-skewness efficient portfolio (portfolio B with (α, β, γ) = (1, 1, 0)), and the

mean-variance-kurtosis efficient portfolio (with (α, β, γ) = (1, 0, 1)). Doing so demonstrates

a key point of our analysis: if investor preferences over skewness and kurtosis are incorpo-
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rated into the portfolio decision, then in mean-variance space the optimal portfolio may well

lie below the mean-variance efficient frontier. The reason is, of course, that expected return,

skewness, and kurtosis are conflicting objectives. Portfolios with relatively high skewness and

low kurtosis will tend to come with a relatively low expected rate of return and vice versa.

Even though investor preferences over variance (or standard deviation) are not explicitly

specified in our objective function, variance still plays a key role in the tradeoff interaction.

In the first stage of our PGP optimization, the optimal values of Z∗
1 , Z∗

3 , and Z∗
4 are each

obtained by seeking the best tradeoff between variance and return, variance and skewness,

and variance and kurtosis, respectively. In the second stage of the PGP optimization, we

obtain the optimal portfolio that has the best possible expected return, skewness and kurtosis

with the relative tradeoffs between them determined by how close their values are to Z∗
1 , Z∗

3

and Z∗
4 with the difference “penalty” determined by investor preferences. Standard deviation

is therefore essentially the tradeoff counterpart to every moment in the optimization process.

3.2 Optimal Allocation Across Hedge Fund Strategies

Table 3 also reports the optimal allocation weights across the different hedge fund strategies

for different sets of investor preferences over expected return, skewness, and kurtosis. When

the analysis is limited to mean-variance space (portfolio A), merger arbitrage is allocated a

dominant 80%. This, however, fully reflects merger arbitrage’s comparatively low volatility

and high return during our data period. The attractive mean-variance characteristics of

merger arbitrage come at the cost of unfavorable skewness and kurtosis properties. When

preference for skewness and kurtosis is introduced, the allocations change dramatically. The

allocation to merger arbitrage drops to a much lower level, while global macro and equity

market neutral take over as the dominant strategies, irrespective of investor size or prefer-

ences. Convertible arbitrage and long/short equity tend to receive relatively small allocations

here and there. No money is allocated to distressed securities and emerging markets.

The allocations in table 3 are not at all in line with strategies’ means and variances as
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reported in table 2. Purely based on mean and variance, one would expect a much higher allo-

cation to merger arbitrage, convertible arbitrage, long/short equity and distressed securities.

Part of the explanation lies in the skewness and kurtosis values reported in table 2. Global

macro combines positive skewness with low kurtosis. Merger arbitrage, convertible arbitrage,

and especially distressed securities, however, exhibit exactly the opposite characteristics.

It is well known that in diversified portfolios the marginal return characteristics of the

assets involved only play a relatively minor role in determining the return characteristics

of the portfolio. To explain the above allocations we therefore must look not only at the

various strategies’ marginal return properties (as given by table 2) but also, and especially,

at the way they are related to each other. Doing so may explain why for example in the PGP

optimal portfolios equity market neutral, which offers a low expected return and significant

negative skewness, receives a higher allocation than long/short equity, which offers a high

expected return and less skewness.

As shown in Davies, Kat and Lu [2003], long/short equity tends to exhibit negative co-

skewness and high co-kurtosis with other strategies. This means that in a portfolio context

the (negative) impact of long/short equity on portfolio skewness and kurtosis will be stronger

than evident from its marginal statistics. Equity market neutral on the other hand tends to

exhibit low co-variance and low co-kurtosis with other strategies. This makes this strategy

attractive as a volatility and kurtosis reducer, which is reflected in the allocations, especially

when preference for kurtosis is high as in portfolio F and portfolio G. Global macro tends

to exhibit positive co-skewness with other strategies and thereby acts as portfolio skewness

enhancer, which explains why this particular strategy picks up by far the highest allocations,

particularly when there is a strong preference for skewness such as in portfolio E and port-

folio H. Contrary to global macro, distressed securities displays strong negative co-skewness

with other strategies, which explains the complete lack of allocations to the latter strategy.

From an economic perspective, none of the above comes as a complete surprise. Although

many hedge funds do not invest directly in equities, a significant drop in stock prices is often
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accompanied by a widening of credit spreads, a significant drop in market liquidity, higher

volatility, etc. Since hedge fund returns are highly sensitive to these factors, most of them

will perform poorly when there is a fall in stock prices, which will technically show up as

negative co-skewness.8 The recent bear market provides a good example. Over the 3 years

that stock prices dropped, overall hedge fund performance (as measured by the main indices)

was virtually flat. The main exceptions to the above are equity market neutral and global

macro funds. For equity market neutral funds maintaining market neutrality is one of their

prime goals, which makes them less sensitive to market moves than other funds. Global macro

funds tend to take views on macro economic events and are generally thought to perform

best when markets drop and/or become more volatile, which is confirmed by their positive

co-skewness properties. Convertible arbitrage funds, which are long convertibles, will suffer

when stock markets come down. On the other hand, they will benefit from the simultaneous

increase in volatility. Overall, this provides convertible arbitrage with relatively moderate

risk characteristics, which in turn explains the allocations to this particular strategy.9

At this stage, it is important to emphasize that the PGP technique is general enough to

accommodate an investor that wishes to replace historic return distributions with her own

beliefs. For instance, an investor could first use the method proposed by Black and Litterman

[1990, 1992] to combine market equilibrium implied returns with her own subjective views

and then use the resulting mixed estimate of expected returns to re-center the distribution

of hedge fund returns, while maintaining its overall shape (in terms of variance, skewness,

and kurtosis). Clearly, this approach would lead to different allocations than those reported

here. For example, it would likely increase expected returns for emerging market funds and

thereby cause this strategy to receive a higher allocation under some preference parameters.

We next consider the sensitivity of the allocations to constraints on standard deviation,

8Note that this also implies a strong negative co-skewness between hedge funds and the stock market.
We will return to this point in section 3.4.

9With more and more convertible arbitrage funds competing for the same trades, some funds may decide
to no longer hedge their credit risk exposure to compensate for the loss of margin. Those funds can be
expected to exhibit a more aggressive risk profile, especially lower co-skewness with other funds and equity.
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skewness, and kurtosis.10 Part A of Tables 4–5 illustrates optimal allocations for portfolios

that have the same preferences over objectives as those in Table 3, but under the constraint

that the portfolio standard deviation is 10% less than its unconstrained value. Part B

illustrates the case in which the value of each portfolio’s skewness is constrained to be 10%

higher than its counterpart in Table 3 and part C illustrates the case in which each portfolio’s

kurtosis is constrained to be 10% lower than its counterpart in Table 3. In the tables, equity

market neutral’s role in reducing portfolio standard deviation and kurtosis and global macro’s

role as a skewness enhancer is evident. Allocations to global macro increase when portfolio

skewness is constrained, while allocations to equity market neutral increase when standard

deviation or kurtosis are constrained.

We have shown that global macro and equity market neutral funds have important roles

to play in FoHF portfolios. More generally, our analysis suggests that it may be optimal

for FoHF to concentrate on just a few specific strategies rather than diversify across a large

variety of them. In practice, strategy-focused FoHF, however, are a lot less common than

well-diversified FoHF.

3.3 Constraints on Capital Allocations

Our framework easily accommodates restrictions on the allocations to a hedge fund strat-

egy. To illustrate, we consider the case where the allocation to each hedge fund strategy is

constrained to be no more than 30% of total capital (xi ≤ 0.30 ∀i). Table 6 displays the

resulting optimal allocations. When allocations are constrained, the degree of variation in

return parameters achievable is quite a lot less than in the unconstrained case. This under-

lines that significant improvements in portfolio skewness and kurtosis can only be achieved

by restricting the number of hedge fund strategies. In comparison with Table 3, we notice

that the previously dominant capital weights on equity market neutral funds and global

10In practice, these constraints could reflect the real or perceived need for fund managers, particularly new
ones, to match closely the risk profile of the fund’s peer group. They could also reflect constraints explicitly
imposed by the fund’s investors.
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macro funds are now forced down to 30%, with merger arbitrage and convertible arbitrage

picking up the difference. As in the case without constraints, the model continues to avoid

distressed securities, long/short equity and emerging markets.

3.4 Portfolios of Stocks, Bonds and Hedge Funds

Until now, we have studied FoHF portfolios in isolation, i.e. implicitly assuming investors will

not invest in anything else than the FoHF. In practice, however, investors will mix FoHF in

with their existing portfolio. The means that preferably the optimal fund of funds portfolio

should be derived from a wider framework, including stocks and bonds, to take account of

the relation between hedge funds, stocks and bonds. This is what we do in this section.

Table 7 reports the moment statistics of optimal portfolios constructed with stocks,

bonds, and hedge fund strategies for small and large investors. Although the addition

of stocks and bonds results in optimal portfolios with less kurtosis and higher skewness

than the corresponding optimal portfolios of hedge funds only, we observe similar behavior.

Again, the mean-variance efficient portfolio has relatively unattractive skewness and kurtosis

properties, which improve when explicit preference for higher moments is introduced. The

improvement comes at a cost, however, as moment statistics tend to trade off against each

other. An improvement in one statistic can only be obtained by accepting deterioration in

one or more others.

Table 7 reveals that the bond index is the primary recipient of capital, receiving at least

40% weight in most instances. In stark contrast, the stock index is sold short, irrespective

of the investor preference parameters. This result is consistent with the observation of Amin

and Kat [2003b] and Davies, Kat and Lu [2003] that hedge funds mix far better with bonds

than with stocks. Whereas the co-skewness between stocks and most hedge fund strategies

is negative, the co-skewness between bonds and hedge funds is generally higher and the co-

kurtosis lower. A long bonds position and a short position in stocks combined with positive

holdings in hedge funds will increase portfolio skewness and reduce kurtosis. As a result,
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optimal portfolios have to rely less on equity market neutral and global macro to perform

these tasks, which allows them to diversify into strategies such as long/short equity and

merger arbitrage. Even in this new context, however, no allocation is given to distressed

securities and emerging markets strategies.

Table 8 shows the asset allocation across stocks, bonds and hedge funds under the con-

straint that capital weights are between zero and 30% for any hedge fund strategy and that

the capital weights are within ±30% for both the stock index and the bond index. In general,

these constraints seem to have quite an impact on the optimal portfolio moment statistics,

reflecting a substantial change in the underlying allocations. With the bond allocation re-

stricted to 30%, the optimal portfolios turn increasingly towards equity market neutral and

global equity to control variance, skewness and kurtosis. Investment in equity market neutral

and global macro funds seems to make a similar contribution to the overall portfolio return

distribution as an investment in the bond index.

4 Conclusion

This paper has incorporated investor preferences for higher moments into a PGP optimization

function. This allows us to solve for multiple competing (and often conflicting) hedge fund

allocation objectives within a 4-moment framework. Our empirical analysis has yielded a

number of conclusions, the most important being that:

• Hedge fund return moment statistics tend to trade off against each other in much the

same way as in the underlying securities markets. Despite following often complex

strategies, hedge funds therefore appear unable to dodge the rules of the game. This

is in line with the results of Amin and Kat [2003c] who conclude that when taking

the entire return distribution into account there is nothing superior about hedge fund

returns.

• Introducing preferences for skewness and kurtosis in the portfolio decision-making
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process may yield portfolios far different from the mean-variance optimal portfolio,

with much less attractive mean-variance characteristics. This again emphasizes the

various trade-offs involved.

• Equity market neutral and global macro funds have important roles to play in op-

timal hedge fund portfolios thanks to their attractive co-variance, co-skewness and

co-kurtosis properties. Equity market neutral funds act as volatility and kurtosis re-

ducers, while global macro funds act as skewness enhancers.

• Especially in terms of skewness, hedge funds and stocks do seem not combine very

well. This suggests that investors may be better off using hedge funds to replace

stocks instead of bonds, as appears to be current practice.

A Procedure to “unsmooth” data

The observed (or smoothed) value V ∗
t of a hedge fund at time t can be expressed as a weighted

average of the underlying (true) value at time t, Vt, and the smoothed value at time t − 1,

V ∗
t−1: V ∗

t = αVt + (1 − α)V ∗
t−1. Let B be the backshift operator defined by BLxt = xt−L.

Define the following lag function, Lt(α), which is a polynomial B, with different coefficients

for each of the t = 1, . . . , 12 appraisal cohorts:

Lt(α) =
t

12
+

∞∑
L=1

[
(1− α)L−1

(
12− t

12

)
+ (1− α)L

(
t

12

)]
BL.

Let rt and r∗t denote the true underlying (unobservable) return and the observed return at

time t respectively. The monthly smoothed return is given by r∗t = αLm(α)rt. We then can

derive:

r∗t = αrt + (1− α)r∗t−1 = αrt + α(1− α)rt−1 + α(1− α)2rt−2 · · · . (12)

Here we implicitly assume that hedge fund managers use a single exponential smoothing

approach. This yields an unsmoothed series with zero first order autocorrelation: rt =

α−1(r∗t − (1 − α)r∗t−1). Since the stock market indices have around zero autocorrelation
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coefficients, it seems plausible in the context of the results above to set 1 − α equal to the

first order autocorrelation coefficient. The newly constructed return series, rt, has the same

mean as r∗t , and zero first order autocorrelation (aside from rounding errors), but with higher

standard deviation.
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Table 1: Statistical summary of reported and “unsmoothed” hedge fund returns

and stock/bond returns. Reported values are calculated from monthly net-of-all-fee

returns and averaged across funds. “Unsmoothed” returns are reported returns adjusted

for possible stale price effects using the technique described in the appendix. Kurtosis

measures excess kurtosis. First-order to fourth-order autocorrelation is given by AC(1)–

AC(4). The final column reports the percentage of funds within each strategy that reject

the null hypothesis of a normal return distribution under a Jarque-Bera (J-B) test with a

5% significance level.

Based on reported returns
N Mean Std Dev Skewness Kurtosis AC(1) AC(2) AC(3) AC(4) J-B (%)

Convertible arbitrage 24 0.96 3.01 −1.14 5.93 0.30 0.15 0.09 0.02 91.7
Distressed securities 29 0.89 2.37 −0.78 6.36 0.25 0.08 −0.04 0.02 86.2
Equity market neutral 12 0.54 2.70 −0.41 2.82 0.20 0.03 0.05 0.05 50.0
Global macro 46 0.77 5.23 1.06 7.63 0.11 0.01 −0.00 −0.03 84.8
Long/short equity 172 1.34 5.83 0.00 3.35 0.09 −0.00 0.01 −0.03 69.2
Merger arbitrage 18 1.17 1.75 −0.50 4.96 0.10 −0.00 0.00 −0.03 77.8
Emerging markets 47 0.22 7.85 −0.86 5.79 0.10 −0.01 −0.00 −0.02 68.1
S&P500 1.36 4.39 −0.83 1.11 −0.11 −0.05 0.03 −0.06
Bond index 0.59 0.84 0.24 1.39 0.22 0.12 0.06 0.02

Based on “unsmoothed” returns
N Mean Std Dev Skewness Kurtosis AC(1) AC(2) AC(3) AC(4) J-B (%)

Convertible arbitrage 24 0.96 3.99 −0.91 5.46 0.00 −0.03 −0.01 −0.02 79.2
Distressed securities 29 0.91 3.06 −0.67 6.60 0.01 −0.03 −0.01 −0.02 86.2
Equity market neutral 12 0.55 3.06 −0.39 2.94 0.01 −0.03 −0.01 −0.02 50.0
Global macro 46 0.76 5.35 1.03 7.16 0.01 −0.02 −0.01 −0.03 82.6
Long/short equity 172 1.37 6.35 0.01 3.19 0.00 −0.03 −0.00 −0.03 68.6
Merger arbitrage 18 1.17 2.06 −0.46 4.65 0.00 −0.03 −0.01 −0.02 77.8
Emerging markets 47 0.23 9.63 −0.91 5.91 0.01 −0.03 −0.01 −0.02 66.0
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Table 2: Statistical summary of returns for representative portfolios. Representative

portfolios are obtained by first randomly sampling 5000 portfolios of a given size (5 or 15

funds). The mean, standard deviation, skewness and kurtosis of each randomly sampled

portfolio’s return series is calculated. Then, the average of each moment over the 5000

portfolios is taken. The representative portfolio is then selected from the 5000 random

portfolios in order to minimize the sum of the ranked differences across each of the four

average moments. Reported values are calculated from monthly net-of-all-fee returns and

averaged across funds. Kurtosis measures excess kurtosis.

Mean Std Dev Skewness Kurtosis
Small Investors (each strategy portfolio has 5 funds)
Convertible arbitrage 0.96 2.84 −0.83 5.11
Distressed securities 0.89 2.23 −1.89 11.00
Equity market neutral 0.50 1.75 −0.40 1.53
Global macro 0.75 3.37 0.64 2.41
Long/short equity 1.38 4.03 −0.21 2.10
Merger arbitrage 1.16 1.54 −1.08 6.62
Emerging markets 0.25 7.54 −1.15 5.80
Large Investors (each strategy portfolio has 15 funds)
Convertible arbitrage 0.95 2.35 −1.00 4.65
Distressed securities 0.90 2.03 −2.55 14.31
Equity market neutral 0.52 1.31 −0.65 1.26
Global macro 0.75 2.79 0.76 1.64
Long/short equity 1.37 3.55 −0.23 1.83
Merger arbitrage 1.17 1.37 −1.71 8.98
Emerging markets 0.22 7.19 −1.27 5.93
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Table 3: Moment statistics and asset allocation across strategy classes for opti-

mal FoHF portfolios. Reported values are calculated from monthly net-of-all-fee returns.

Investors assign capital to representative portfolios of convertible arbitrage, distressed securi-

ties, equity market neutral, global macro, long/short equity, merger arbitrage, and emerging

market hedge funds. Optimal allocations are based on investors’ preferences over expected

return (α), skewness (β) and kurtosis (γ) using the PGP technique.

Portfolio A B C D E F G H I J
α 1.00 1.00 1.00 3.00 1.00 1.00 2.00 2.00 3.00 3.00
β 0.00 1.00 1.00 1.00 3.00 1.00 1.00 3.00 2.00 1.00
γ 0.00 0.00 0.25 0.25 0.25 0.75 0.75 0.25 0.25 0.50
Small investors (representative strategy portfolios have 5 funds)
Moments:

Expected return 1.07 0.85 1.38 0.83 0.79 0.70 0.66 0.84 0.79 0.77
Standard deviation 1.30 2.78 4.03 1.42 2.40 1.59 1.46 2.84 1.70 1.38
Skewness −1.25 0.66 −0.21 0.25 0.63 0.27 0.23 0.66 0.51 0.15
Kurtosis 6.07 1.96 2.10 1.01 1.76 −0.26 −0.27 1.72 1.35 0.05

Allocation:
Convertible arbitrage 0.05 0.04 0.00 0.10 0.13 0.11 0.13 0.03 0.09 0.11
Distressed securities 0.00 0.00 0.00 0.00 0.04 0.00 0.10 0.00 0.00 0.00
Equity market neutral 0.10 0.01 0.00 0.27 0.12 0.52 0.51 0.04 0.28 0.41
Global macro 0.05 0.78 0.00 0.32 0.66 0.28 0.25 0.78 0.43 0.25
Long/short equity 0.00 0.10 1.00 0.00 0.05 0.09 0.00 0.15 0.01 0.04
Merger arbitrage 0.80 0.07 0.00 0.30 0.00 0.00 0.00 0.00 0.19 0.19
Emerging markets 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Large investors (representative strategy portfolios have 15 funds)
Moments:

Expected return 0.97 0.75 0.76 0.85 0.73 0.66 0.77 0.75 0.78 0.79
Standard deviation 0.92 1.51 1.40 1.13 1.69 1.35 0.92 1.50 1.26 0.93
Skewness −1.29 0.83 0.80 0.31 0.85 0.42 0.19 0.83 0.72 0.21
Kurtosis 6.19 1.42 1.29 1.13 1.42 0.19 0.29 1.40 1.20 0.45

Allocation:
Convertible arbitrage 0.02 0.01 0.04 0.09 0.00 0.16 0.09 0.02 0.03 0.08
Distressed securities 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Equity market neutral 0.30 0.32 0.34 0.27 0.32 0.45 0.47 0.32 0.34 0.44
Global macro 0.00 0.49 0.44 0.30 0.56 0.35 0.19 0.49 0.38 0.20
Long/short equity 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00
Merger arbitrage 0.68 0.18 0.18 0.34 0.09 0.00 0.25 0.17 0.25 0.29
Emerging markets 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00

26



Table 4: Asset allocation for optimal hedge fund portfolios with constrained port-

folio standard deviation, skewness or kurtosis for small investors. Panel A illus-

trates optimal allocations for portfolios that have the same preferences over objectives as

those in Table 4, but under the constraint that the portfolio standard deviation is 10% less

than its unconstrained value. Panel B illustrates the case in which the value of each portfo-

lio’s skewness is constrained to be 10% higher than its counterpart in Table 4 and panel C

illustrates the case in which each portfolio’s kurtosis is constrained to be 10% lower than its

counterpart in Table 4. Each optimal portfolio is constructed under investors’ preferences

over expected return (α), skewness (β), and excess kurtosis (γ) using the PGP technique,

selected from representative portfolios of convertible arbitrage, distressed securities, equity

market neutral, global macro, long/short equity, merger arbitrage and emerging market

funds. Each representative strategy portfolio has 5 funds. Bold numbers indicate that the

strategy capital loading has increased relative to the optimal unconstrained portfolio.

Portfolio A B C D E F G H I J
α 1.00 1.00 1.00 3.00 1.00 1.00 2.00 2.00 3.00 3.00
β 0.00 1.00 1.00 1.00 3.00 1.00 1.00 3.00 2.00 1.00
γ 0.00 0.00 0.25 0.25 0.25 0.75 0.75 0.25 0.25 0.50
A: Standard deviation constrained (10% improvement)
Convertible arbitrage 0.06 0.05 0.07 0.09 0.00 0.12 0.11 0.05 0.13 0.06
Distressed securities 0.00 0.00 0.00 0.00 0.00 0.11 0.00 0.00 0.00 0.07
Equity market neutral 0.21 0.07 0.33 0.35 0.68 0.53 0.47 0.13 0.30 0.63
Global macro 0.05 0.70 0.47 0.25 0.07 0.24 0.22 0.69 0.35 0.05
Long/short equity 0.00 0.07 0.13 0.00 0.01 0.00 0.00 0.13 0.01 0.00
Merger arbitrage 0.68 0.10 0.00 0.31 0.24 0.00 0.20 0.00 0.21 0.18
Emerging markets 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
B: Skewness constrained (10% improvement)
Convertible arbitrage 0.09 0.01 0.07 0.10 0.01 0.11 0.12 0.01 0.08 0.11
Distressed securities 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Equity market neutral 0.13 0.00 0.33 0.26 0.00 0.52 0.50 0.00 0.16 0.40
Global macro 0.13 0.89 0.48 0.34 0.89 0.29 0.28 0.90 0.53 0.26
Long/short equity 0.00 0.12 0.13 0.00 0.11 0.09 0.11 0.12 0.06 0.02
Merger arbitrage 0.65 0.00 0.00 0.30 0.00 0.00 0.00 0.00 0.17 0.21
Emerging markets 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
C: Kurtosis constrained (10% improvement)
Convertible arbitrage 0.08 0.04 0.07 0.12 0.02 0.11 0.14 0.04 0.08 0.10
Distressed securities 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00
Equity market neutral 0.13 0.03 0.33 0.29 0.12 0.53 0.54 0.12 0.24 0.42
Global macro 0.04 0.78 0.48 0.38 0.71 0.27 0.25 0.69 0.48 0.25
Long/short equity 0.00 0.14 0.13 0.16 0.15 0.09 0.03 0.15 0.09 0.02
Merger arbitrage 0.75 0.01 0.00 0.04 0.00 0.00 0.00 0.00 0.11 0.21
Emerging markets 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Table 5: Asset allocation for optimal hedge fund portfolios with constrained port-

folio standard deviation, skewness or kurtosis for large investors. Panel A illustrates

optimal allocations for portfolios that have the same preferences over objectives as those in

Table 4, but under the constraint that the portfolio standard deviation is 10% less than its

unconstrained value. Panel B illustrates the case in which the value of each portfolio’s skew-

ness is constrained to be 10% higher than its counterpart in Table 4 and panel C illustrates

the case in which each portfolio’s kurtosis is constrained to be 10% lower than its counterpart

in Table 4. Each optimal portfolio is constructed under investors’ preferences over expected

return (α), skewness (β), and excess kurtosis (γ) using the PGP technique, selected from

representative portfolios of convertible arbitrage, distressed securities, equity market neutral,

global macro, long/short equity, merger arbitrage and emerging market funds. Each repre-

sentative strategy portfolio has 15 funds. Bold numbers indicate that the strategy capital

loading has increased relative to the optimal unconstrained portfolio.

Portfolio A B C D E F G H I J
α 1.00 1.00 1.00 3.00 1.00 1.00 2.00 2.00 3.00 3.00
β 0.00 1.00 1.00 1.00 3.00 1.00 1.00 3.00 2.00 1.00
γ 0.00 0.00 0.25 0.25 0.25 0.75 0.75 0.25 0.25 0.50
A: Standard deviation constrained (10% improvement)
Convertible arbitrage 0.03 0.04 0.04 0.00 0.02 0.14 0.07 0.02 0.03 0.03
Distressed securities 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01
Equity market neutral 0.39 0.49 0.38 0.46 0.34 0.47 0.57 0.36 0.38 0.62
Global macro 0.01 0.13 0.38 0.23 0.50 0.30 0.00 0.42 0.32 0.00
Long/short equity 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02
Merger arbitrage 0.57 0.34 0.20 0.32 0.15 0.06 0.36 0.19 0.26 0.32
Emerging markets 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00
B: Skewness constrained (10% improvement)
Convertible arbitrage 0.03 0.01 0.00 0.05 0.00 0.18 0.09 0.00 0.02 0.07
Distressed securities 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Equity market neutral 0.33 0.32 0.30 0.38 0.30 0.26 0.47 0.31 0.33 0.43
Global macro 0.00 0.49 0.62 0.26 0.61 0.48 0.19 0.61 0.44 0.20
Long/short equity 0.00 0.00 0.03 0.00 0.02 0.05 0.00 0.02 0.00 0.00
Merger arbitrage 0.65 0.18 0.06 0.31 0.08 0.00 0.25 0.06 0.21 0.29
Emerging markets 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00
C: Kurtosis constrained (10% improvement)
Convertible arbitrage 0.03 0.16 0.03 0.13 0.00 0.10 0.07 0.02 0.05 0.08
Distressed securities 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Equity market neutral 0.31 0.46 0.34 0.83 0.32 0.50 0.57 0.34 0.36 0.44
Global macro 0.00 0.34 0.47 0.03 0.58 0.17 0.00 0.48 0.36 0.19
Long/short equity 0.00 0.00 0.05 0.00 0.07 0.00 0.00 0.03 0.00 0.00
Merger arbitrage 0.66 0.00 0.12 0.01 0.03 0.22 0.36 0.14 0.24 0.29
Emerging markets 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Table 6: Moment statistics and asset allocation across strategy classes for optimal

fund of hedge fund portfolios with global constraints on capital investment. Re-

ported values are calculated from monthly net-of-all-fee returns. Investors assign capital to

representative portfolios of convertible arbitrage, distressed securities, equity market neutral,

global macro, long/short equity, merger arbitrage, emerging market hedge funds. Optimal

allocations are based on investors’ preferences over expected return (α), skewness (β) and

kurtosis (γ) using the PGP technique. The capital weight for each hedge fund strategy is

constrained to be between zero and 30%.

Portfolio A B C D E F G H I J
α 1.00 1.00 1.00 3.00 1.00 1.00 2.00 2.00 3.00 3.00
β 0.00 1.00 1.00 1.00 3.00 1.00 1.00 3.00 2.00 1.00
γ 0.00 0.00 0.25 0.25 0.25 0.75 0.75 0.25 0.25 0.50
Small investors (representative strategy portfolios have 5 funds)
Moments:

Expected return 0.90 0.82 0.81 0.82 0.81 0.84 0.76 0.81 0.82 0.82
Standard deviation 1.28 1.39 1.40 1.38 1.40 1.76 1.61 1.39 1.39 1.42
Skewness −1.26 0.22 0.22 0.21 0.22 0.08 0.04 0.22 0.22 0.19
Kurtosis 3.47 0.74 0.64 0.80 0.67 0.12 0.55 0.69 0.73 0.59

Allocation:
Convertible arbitrage 0.19 0.12 0.15 0.10 0.14 0.19 0.30 0.13 0.12 0.14
Distressed securities 0.15 0.00 0.00 0.00 0.00 0.00 0.06 0.00 0.00 0.00
Equity market neutral 0.24 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30
Global macro 0.07 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30
Long/short equity 0.04 0.00 0.00 0.00 0.00 0.19 0.01 0.00 0.00 0.02
Merger arbitrage 0.30 0.28 0.25 0.30 0.26 0.02 0.02 0.27 0.28 0.24
Emerging markets 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00

Large investors (representative strategy portfolios have 15 funds)
Moments:

Expected return 0.88 0.83 0.83 0.83 0.83 0.81 0.82 0.83 0.83 0.83
Standard deviation 1.00 1.12 1.12 1.12 1.12 1.15 1.14 1.12 1.12 1.12
Skewness −1.32 0.39 0.39 0.39 0.39 0.32 0.34 0.39 0.39 0.39
Kurtosis 3.63 0.91 0.86 0.91 0.91 0.59 0.63 0.91 0.91 0.85

Allocation:
Convertible arbitrage 0.18 0.10 0.11 0.10 0.10 0.17 0.16 0.10 0.10 0.11
Distressed securities 0.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Equity market neutral 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30
Global macro 0.06 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30
Long/short equity 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Merger arbitrage 0.30 0.30 0.29 0.30 0.30 0.23 0.24 0.30 0.30 0.29
Emerging markets 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Table 7: Moment statistics and optimal asset allocation across stocks, bonds, and

hedge fund strategies. Reported values are calculated from monthly net-of-all-fee returns.

Investors assign capital to representative portfolios of convertible arbitrage, distressed secu-

rities, equity market neutral, global macro, long/short equity, merger arbitrage, emerging

market hedge funds, the S&P 500 index, and the Salomon Brothers 7-Year Government Bond

US Index. Optimal allocations are based on investors’ preferences over expected return (α),

skewness (β) and kurtosis (γ) using the PGP technique.

Portfolio A B C D E F G H I J
α 1.00 1.00 1.00 3.00 1.00 1.00 2.00 2.00 3.00 3.00
β 0.00 1.00 1.00 1.00 3.00 1.00 1.00 3.00 2.00 1.00
γ 0.00 0.00 0.25 0.25 0.25 0.75 0.75 0.25 0.25 0.50
Small investors (representative strategy portfolios have 5 funds)
Moments:

Expected return 0.83 0.87 0.72 0.76 0.72 0.60 0.74 0.56 0.75 0.75
Standard deviation 0.71 3.20 0.87 0.63 0.88 0.75 0.61 0.77 0.73 0.62
Skewness −0.14 0.88 0.70 0.13 0.71 0.16 0.11 0.48 0.48 0.10
Kurtosis 0.94 3.48 1.17 −0.21 1.22 −0.81 −0.40 0.82 0.61 −0.33

Allocation:
Convertible arbitrage 0.06 0.19 0.06 0.07 0.06 0.10 0.08 0.14 0.06 0.08
Distressed securities 0.00 0.03 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00
Equity market neutral 0.06 0.00 0.16 0.09 0.16 0.17 0.13 0.15 0.12 0.11
Global macro 0.02 0.00 0.19 0.06 0.19 0.04 0.05 0.00 0.13 0.05
Long/short equity 0.00 0.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Merger arbitrage 0.45 0.00 0.19 0.32 0.19 0.00 0.27 0.00 0.27 0.29
Emerging markets 0.00 0.10 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00
S&P500 −0.04 −0.72 −0.02 −0.05 −0.02 −0.03 −0.04 −0.10 −0.04 −0.05
Bond index 0.46 0.40 0.42 0.51 0.42 0.62 0.52 0.80 0.46 0.52

Large investors (representative strategy portfolios have 15 funds)
Moments:

Expected return 0.86 0.87 0.83 0.83 0.77 0.63 0.83 0.85 0.89 0.83
Standard deviation 0.65 1.59 1.37 0.72 1.38 0.83 0.67 1.55 1.23 0.67
Skewness −0.48 1.12 1.06 0.25 0.99 0.12 0.02 1.12 0.88 0.01
Kurtosis 0.83 2.53 1.45 0.04 1.38 −0.71 −0.46 2.11 2.90 −0.44

Allocation:
Convertible arbitrage 0.05 0.00 0.05 0.12 0.04 0.12 0.13 0.00 0.04 0.12
Distressed securities 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Equity market neutral 0.16 0.00 0.00 0.00 0.00 0.16 0.00 0.00 0.00 0.00
Global macro 0.00 0.31 0.35 0.12 0.42 0.07 0.00 0.34 0.13 0.00
Long/short equity 0.00 0.39 0.25 0.00 0.15 0.00 0.00 0.35 0.30 0.00
Merger arbitrage 0.54 0.27 0.22 0.48 0.22 0.00 0.48 0.24 0.39 0.47
Emerging markets 0.00 0.00 0.00 0.00 0.01 0.05 0.00 0.00 0.00 0.00
S&P500 −0.07 −0.30 −0.21 −0.13 −0.19 0.02 −0.11 −0.27 −0.25 −0.10
Bond index 0.32 0.33 0.35 0.41 0.34 0.58 0.51 0.33 0.40 0.51
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Table 8: Moment statistics and optimal asset allocation across stocks, bonds, and

hedge fund strategy classes with global constraints on capital investment. Re-

ported values are calculated from monthly net-of-all-fee returns. Investors assign capital to

representative portfolios of convertible arbitrage, distressed securities, equity market neu-

tral, global macro, long/short equity, merger arbitrage, emerging market hedge funds, the

S&P 500 index, and the Salomon Brothers 7-Year Government Bond US Index. Optimal

allocations are based on investors’ preferences over expected return (α), skewness (β) and

kurtosis (γ) using the PGP technique. The capital weight for each hedge fund strategy is

constrained to be between zero and 30% and the capital weights for the stock and bond

indices are both constrained to be within ±30%.

Portfolio A B C D E F G H I J
α 1.00 1.00 1.00 3.00 1.00 1.00 2.00 2.00 3.00 3.00
β 0.00 1.00 1.00 1.00 3.00 1.00 1.00 3.00 2.00 1.00
γ 0.00 0.00 0.25 0.25 0.25 0.75 0.75 0.25 0.25 0.50
Small investors (representative strategy portfolios have 5 funds)
Moments:

Expected return 0.81 0.75 0.78 0.77 0.73 0.71 0.77 0.76 0.77 0.76
Standard deviation 0.81 1.18 1.47 0.86 1.09 1.16 0.95 0.99 0.92 0.81
Skewness −0.72 0.75 0.65 0.36 0.71 0.38 0.21 0.63 0.51 0.22
Kurtosis 1.11 1.84 0.61 0.45 1.21 −0.29 −0.31 1.18 0.98 0.05

Allocation:
Convertible arbitrage 0.12 0.06 0.08 0.09 0.07 0.09 0.09 0.07 0.08 0.09
Distressed securities 0.05 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00
Equity market neutral 0.19 0.15 0.14 0.19 0.21 0.30 0.24 0.18 0.17 0.23
Global macro 0.04 0.30 0.30 0.16 0.25 0.15 0.13 0.23 0.20 0.13
Long/short equity 0.00 0.00 0.24 0.00 0.00 0.21 0.13 0.00 0.00 0.00
Merger arbitrage 0.30 0.21 0.09 0.30 0.17 0.08 0.25 0.25 0.30 0.30
Emerging markets 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
S&P500 −0.01 −0.02 −0.15 −0.04 −0.01 −0.18 −0.13 −0.03 −0.05 −0.05
Bond index 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30

Large investors (representative strategy portfolios have 15 funds)
Moments:

Expected return 0.79 0.87 0.82 0.76 0.87 0.70 0.77 0.87 0.84 0.75
Standard deviation 0.63 1.41 1.21 0.67 1.41 0.88 0.71 1.41 1.18 0.60
Skewness −0.32 1.05 0.97 0.44 1.05 0.47 0.16 1.05 0.95 0.04
Kurtosis 0.11 1.95 1.18 0.51 1.94 −0.38 −0.46 1.94 1.25 −0.35

Allocation:
Convertible arbitrage 0.10 0.04 0.06 0.08 0.05 0.07 0.08 0.05 0.06 0.09
Distressed securities 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02
Equity market neutral 0.26 0.01 0.06 0.23 0.01 0.30 0.30 0.01 0.04 0.30
Global macro 0.01 0.30 0.30 0.14 0.30 0.15 0.09 0.30 0.29 0.04
Long/short equity 0.02 0.30 0.21 0.00 0.30 0.14 0.09 0.30 0.19 0.00
Merger arbitrage 0.30 0.30 0.26 0.30 0.30 0.14 0.30 0.30 0.30 0.30
Emerging markets 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00
S&P500 −0.03 −0.25 −0.19 −0.06 −0.26 −0.13 −0.11 −0.26 −0.19 −0.05
Bond index 0.30 0.30 0.30 0.30 0.30 0.30 0.25 0.30 0.30 0.30
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Figure 1: This figure illustrates how the deviation from the two space optimal expected return

varies as we vary the large investor’s preference parameter over the given moment, holding

the investor’s preference over the other moments constant. For expected return, we hold

β = 1 and γ = 0.5 constant and plot the deviation d1 versus the preference parameter

over expected return (α). The deviation is measured relative to 0.97, which is the highest

obtainable expected return when variance is held constant at one. For skewness, we hold

α = 1 and γ = 0.5 constant, and plot the deviation d3 versus the preference parameter over

skewness (β). The deviation is measured relative to 0.85, which is the highest obtainable

skewness value when variance is held constant at one. For kurtosis, we hold α = 1 and

β = 1 constant and plot the deviation d4 versus the preference parameter over kurtosis (γ).

The deviation is measured relative to −0.10, which is the lowest obtainable kurtosis value

when variance is held constant at one.
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Figure 2: This figure illustrates the feasible set of portfolios and the efficient frontier in a

mean-variance framework for large investors. The square point indicates the optimal portfolio

for (α, β, γ) = (1, 0, 1). The triangle point indicates the optimal portfolio for (α, β, γ) =

(0, 0, 1). The diamond point indicates the optimal portfolio for (α, β, γ) = (1, 1, 0).
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