Financial Markets and Instruments - 9/12/12
Wednesday, September 12, 2012
11:30 AM

Screen clipping taken: 9/12/2012 11:32 AM

- Some people are not using banks at all (to avoid fees) (Page A1 of WSJ)
- Uses a debit card from a "nonbank bank"
- Whistleblower from Swedish tax-fraud case against UBS awarded $\$ 104$ million
- Exchanges plot fixes for their glitches
- Ongoing problem with Knight capital
- Uncle Sam has an Inflation Deal for you
- Important section to read everyday
- Some Funds Dip Toe back into Egypt
- Things that happen around the world can have national effects

For next Wednesday's class, get into groups for the second midterm (preferably groups of 4) with 4-6 topics to write about
Chapter 3 - Interest Rates and Security Valuation

Class Example:
7 year, 6% semi-annual coupon, FV \$1000, 10% semi-annual interest

0	1	2	3	4	5

Key Phrases:

- Coupon rate
periodic cash flow a bond issuer contractually promises to pay a bond holder
- Required rate of return (r)
rates used by individual market participants to calculate fair present values ($P V$)
- Expected rate of return or $E(r)$
rates participants would earn by buying securities at
current market prices (P) current market prices (P)
- Realized rate of return (\bar{r})
rate actually earned on investments
$(1.05)^{2}=1.1025$
EAR $=10.25 \%$

NEW PROBLEM

7 year, 6% semi-annual coupon, FV \$1000, 10\% EAR interest

		\mid	\mid		
0	1	2	3	4	5

30
$(1+r)^{\frac{1}{2}}$

$\mathrm{EAR}=10 \%$

$$
\mathrm{n}=14 \quad \mathrm{FV}=1,000
$$

$$
\mathrm{PMT}=30 \mathrm{PV}=802.0271812
$$

$$
\%=4.88088
$$

$(1+E S R)^{2}=1+E A R$
Value of Stock:
$P_{0}=\frac{\operatorname{Div}_{1}}{r-g}$
(short version)
Growing Perpetuity
Growing Perp: $P V=\frac{c}{r-g}$
Growing Annuity: $P V=\frac{C}{r-g}\left(1-\frac{1+g}{}_{1+r}{ }^{N}\right)$

$a=\frac{C}{1+r}$	0	1	2	3	4	5

$x=\frac{1+g}{1+r} \quad \mathrm{PV}=\quad \frac{c}{1+r}+\frac{c(1+g)}{(1+r)^{2}}+\frac{c(1+g)^{2}}{(1+r)^{3}}+\frac{c(1+g)^{3}}{(1+r)^{4}}+\frac{c(1+g)^{4}}{(1+r)^{5}}$
$\mathrm{PV}=\mathrm{a}+\mathrm{ax}+a x^{2}+a x^{3}+a x^{4}$
$\mathrm{PV}=\quad \frac{a}{1-x}=\frac{\frac{c}{1+r}}{1-\frac{1+g}{1+r}}$

Relation between Interest Rates and Bond Values

i

Impact of Coupon Rates on Price Volatility

Impact of Maturity on Price Volatility (a)

Absolute Value of
Percent Change in a
Bond's Price for a
Given Change in
Interest Rates

Impact of r on Price Volatility

Bond Price

