September 24 ${ }^{\text {th }}, 2012$
Financial Markets and Instruments 3560
Professor Goldstein
Notes By: Omar Almajali RED NOTES AND HIGHLIGHTING By Dr. Goldstein
Financial Indicators (Source: Wall Street Journal \& Yahoo Finance!):

- DJIA: 13579.47
- NASDAQ: 3179.96
- S\&P: 1458.91003
- DOW: 13584
- Oil: 91.9199
- Gold: 1766.90
- EUR: 1.2929

What is on the news - WSJ:

- 'Free' Checking Costs More - Section A1
- Managers Take Timeout From Stocks - Section C1
- The Door Is Now Open to Home Builders - Section C1

Side Notes from the Professor:

a. Students need to start doing the end of chapter problems - MIDTERM COMING UP!!!!
b. Next two weeks of class will be less math-oriented (HAPPY NEWS)!
c. Go to "Entire Course" on Prof. Goldstein's website to see questions similar to the midterm.
"Partial answers" next to this link is the answers to some of the questions posted.
Topic of Class continues on Duration...

- Duration is a sensitivity analysis tool that can be used to measure the changes in Bond Prices according to changes in interest rates
$>$ Example (1):
- New way to solve Duration quickly and with a calculator is by using the "Store" and " Recall" buttons on our calculators, as following:

Assuming the following what is the Duration of the Bond?

- A 4 year 9\% annual coupon Bond \rightarrow EAR: 8\%

New Calculator method:

- $\quad N=4$
- \quad Pmt $=90$
- $1 \%=8$
- $\quad \mathrm{FV}=1000$
- $\quad \mathrm{PV}=1033.121268 \rightarrow$ This value could then be stored into our calculators by pressing the button "STO" on the left hand side, then press any number to store it there (for eg. Number 9)... in order to retrieve this number you should then press "RCL" then number 9.

In order to use this method, it is easier to simplify the cash flows in our heads and then store them:

- CF1: $\frac{1 \times 90}{1.08} \rightarrow \frac{90}{1.08} \rightarrow$ then store on \# 1
- CF2: $\frac{2 \times 90}{1.08^{2}} \rightarrow \frac{180}{1.08^{2}} \rightarrow$ then store on \# 2
- CF3: $\frac{3 \times 90}{1.08^{3}} \rightarrow \frac{270}{1.08^{3}} \rightarrow$ then store on \# 3
- CF4: $\frac{4 \times(1000+90)}{1.08^{4}} \rightarrow \frac{4360}{1.08^{4}} \rightarrow$ then store on \# 4
- In order to then calculate the Duration we have to divide the sum all of the above cash flows over the Price of the bond, to do it in the new calculator way would be by:
- ("RCL" 1 + "RCL" 2 + "RCL" 3 + "RCL" 4) / "RCL" 5

The answer is $\rightarrow 3656.719184 / 1033.121268=3.539486890$

- We previously learned that: $\Delta p=-D \times P \times \frac{\Delta r}{1+r} \rightarrow$ which gives us the change in the price of the bond as a response to change in the interest rate.
- Therefore if interest rate changes from 8% to 7% :
- $\Delta p=-3.53948689 \times 1033.121268 \times \frac{-0.01}{1+0.08}=+33.85851096$
- The new bond price is then $1033.121268+33.85851096=1066.979779$
- $\quad-D \times P=$ total cashflows \times periods NOTE: This is just a point that this number will be the 3656.719184 number that was previously calculated.
- There is also another way for calculating Duration (which is available on Chapter 3's Presentation on Professor Goldstein's website):

$$
\operatorname{Dur}=\mathrm{N}-\left\{\frac{\mathrm{INT}}{\left(\mathrm{P}_{\mathrm{o}} \times \mathrm{r}\right)} \times\left[\mathrm{N}-\left((1+\mathrm{r}) \times \mathrm{PVIFA}_{\mathrm{r}, \mathrm{~N}}\right)\right]\right\}
$$

- \quad PVIFA $_{\mathrm{r}, \mathrm{N}}=$
- $\quad N=4$
- $\quad l=8$
- $\quad P M T=1$
- $\quad F V=0$
- $\quad P V=3.31212684$
- Substituting our old values into this equation we will get:
$4+\left\{\frac{90}{1033.121268} \times[4-(1.08 \times 3.31212684)]\right\}=3.339923021$ (off a bit from our previous calculation but still is a way to solve duration)
- This Problem is easier to be solved backwards starting from PVIFA ${ }_{r, N}$ back to N
- The professor proved to us in class that if a person sells a bond at Duration date then they'll be immunized against losses potentially caused by change in interest rate:

- Assumptions for previous spreadsheet (Example A):
- Coupon Rate: 10%, Face Value: 1000 , YTM= 8%
- 348.36 and 1046.98 are the old Bonds reinvestment and Bond sales respectively before changing the interest rates
- However after raising the interest rate to 9\%, the reinvestment and bond sale change to 342.43 and 1052.63 respectively. Although interest rates rose by 1\%, the TOTAL AMOUNT OF MONEY YOU HAVE FROM the combination of BOTH the amount you invested in the bank AND the bond sale changed ONLY BY by 7 cents. That is true because the immunization trait of Duration allowed for the reinvestments to increase by an amount higher than the amount the bond sales went down.
- Even if the interest rates go up to 16% (double the original 8% so honestly, this shouldn't really work as this is WAY far off). The bond sale at Duration's period would still have higher prices than the original price. (Students can go to the spreadsheet and try different numbers to assess this fact).

(Example B)

- In order to further demonstrate the previous point on immunization we are going to assume our old Bond assumptions of: Coupon Rate=10\%, Face Value $=1000$, $\mathrm{YTM}=8 \%$ and Duration/holding period of 3.539486890
- If the bond owner sells before the duration at period " 2 " , then the owner would incur a loss in the sale of 146.64 as shown below in the spreadsheet screen shot:

More Exercises on Selling a Bond:
Exercise 1:

0
1
2
3
4

$$
\frac{90}{1.08}
$$

$\frac{90}{1.08^{2}}$

$$
\frac{90}{1.08^{3}}
$$

$$
\frac{(90+1000)}{1.08^{4}}
$$

The PV of these cash flows (as calculated earlier) is 1033.1213
What is the price of selling the bond 2 years from now? (Answer on the next page)

- So the PV of the same bond after 2 years becomes the addition of the above cash flows = 1017.832647

Exercise 2:

Today is September $24^{\text {th }}, 2012$. On June 24,2010 FM issues a 9% annual 4 year bond with EAR of 8%, what is the price today? NOTE: The bond was issued $21 / 4$ years ago!

Method \# 1:

$\begin{array}{lllllllll}0 & 1 / 4 & 1 / 2 & 3 / 4 & 1 & 11 / 4 & 11 / 2 & 13 / 4 & 2\end{array}$

So, you can value this directly, using the method we always use: Just discount each cash flow at 1+EAR raised to the number of years you are waiting for that payment:
$-P V=\frac{90}{1.08^{0.75}}+\frac{1090}{1.08^{1.75}}=1037.605$

1. Pretend that today is June 2012 and therefore we are on " 1 " in regards of the time line.
2. We discount our " 2 " payment back to $1 \rightarrow \frac{1090}{1.08}=1009.259$ (if we sell this at 1 pm, i.e. after receiving the $3^{\text {rd }}$ periods payments)
3. If, however, the time is 11 am then we have to discount the 3 rds period payment + the 4 ths period payment back to September as well $\rightarrow \frac{1009.9259+90}{1.08^{0.75}}=1037.605$

NOTE: EITHER WAY, we end up with the SAME answer!

Exercise 3:

What is the price NOW of a 7% annual coupon Bond with EAR of 10% if it is going to mature $21 \frac{1}{4}$ years from today?

1. Step 1 is to move up the first three months and exclude the payment that is received then.
2. Step 2 is discounting the bond payments for the next 21 periods as following:

- $\quad \mathrm{N}=21$
- $\quad \mathrm{l}=10$
- $\quad \mathrm{FV}=1000$
- $\quad P M T=70$
- $\quad P V=740.539$

3. We add 70 to the PV we got which gives us $=810.539$, then discount this value back $1 / 4^{\text {th }}$ of a period to time $0 \rightarrow \frac{810.539}{1.1^{1 / 4}}=791.4542$ is the price now for this bond.
